1. A reaction Forming a "Complex ion."

$$Fe^{+3}(aq) + SCN^{-}(aq) \leftrightarrow Fe(SCN)^{+2}(aq)$$

Without performing calculations, we want to determine which reactant is limiting. We shall "divide and test" to see which reactant, when added, will produce more products.

Experimental Result:

2. Writing Equilibrium Constant Expressions.

- In general, for **Reactants** ↔ **Products**,
- For $A + 2B \leftrightarrow 3C + 4D$,

3. The Units of Concentration used in K Expressions:

State or Phase	Symbol	Property Type and Units Used
Gases	(g)	
Solutes in solution	(aq)	

Solvent, other liquids (1)

4. Write out K expressions for each reaction. Use the proper term for each R and P.

$$Fe^{+3}(aq) + SCN^{-}(aq) \leftrightarrow Fe(SCN)^{+2}(aq)$$

$$2 \; ICl(g) \;\; \leftrightarrow \;\; I_2(g) \; + \; Cl_2(g)$$

$$2 \; ICl(g) \;\; \leftrightarrow \;\; I_2(s) \; + \; Cl_2(g)$$

$$CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$$

$$Mg(OH)_2 \leftrightarrow Mg^{+2}(aq) + 2OH^{-}(aq)$$

$$2 H_3O^+(aq) + Ag_2S(s) \leftrightarrow 2 Ag^+(aq) + H_2S(g) + 2 H_2O(\ell)$$

<u>Notes</u>: - It is <u>concentration</u> (not the amount in moles) that determines reaction rates and the dynamic equilibrium state.

-The number $\underline{\text{value of } K}$ depends on the particular reaction, the units of concentration used (Kp or Kc) and the $\underline{\text{temperature}}$.

-Usually the $\underline{\text{units of } K}$ are omitted.

5. The following equilibrium data (all at 30.°C) are available for this reaction: $N_2O_4(g) \leftrightarrow 2NO_2(g)$

Experiment	$P_{N_2O_4}$	$^{\mathbf{P}}_{\mathbf{NO}_{2}}$	Kp	
1	0.723 atm	0.393 atm		
2	0.184 atm	0.197 atm		
3		0.250 atm		
4	0.500 atm			

(a) Write out the K expression for this reaction:

(b) Calculate the value for Kp for Experiments 1 and 2. What important point is illustrated by these two results?

(c) Find the missing entries for Experiments 3 & 4