1. A reaction Forming a "Complex ion."

$$
\mathrm{Fe}^{+3}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{Fe}(\mathrm{SCN})^{+2}(\mathrm{aq})
$$

Without performing calculations, we want to determine which reactant is limiting. We shall "divide and test" to see which reactant, when added, will produce more products.
Experimental Result:

2. Writing Equilibrium Constant Expressions.

- In general, for Reactants \leftrightarrow Products,
- For $\mathbf{A}+2 \mathbf{B} \leftrightarrow \mathbf{3 C + 4 D}$,

3. The Units of Concentration used in K Expressions:

State or Phase	$\underline{\text { Symbol }}$	Property Type and Units Used
Gases	(g)	

Solutes in solution (aq)

Solvent, other liquids
(1)

Solids
(s)
4. Write out K expressions for each reaction. Use the proper term for each R and P.
$\mathrm{Fe}^{+3}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{Fe}(\mathrm{SCN})^{+2}(\mathrm{aq})$
$2 \mathrm{ICl}(\mathrm{g}) \leftrightarrow \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$2 \mathrm{ICl}(\mathrm{g}) \leftrightarrow \mathrm{I}_{2}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{Mg}(\mathrm{OH})_{2} \leftrightarrow \mathrm{Mg}^{+2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s}) \leftrightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$

Notes: - It is concentration (not the amount in moles) that determines reaction rates and the dynamic equilibrium state.
-The number value of K depends on the particular reaction, the units of concentration used (Kp or Kc) and the temperature.
5. The following equilibrium data (all at $30 .{ }^{\circ} \mathrm{C}$) are available for this reaction: $\mathbf{N}_{\mathbf{2}} \mathrm{O}_{\mathbf{4}}(\mathrm{g}) \leftrightarrow 2 \mathbf{N O}_{\mathbf{2}}(\mathrm{g})$

Experiment	$\mathbf{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}$	$\mathbf{P}_{\mathrm{NO}_{2}}$	Kp
1	0.723 atm	0.393 atm	-
2	0.184 atm	0.197 atm	-
3	-	0.250 atm	-
4	0.500 atm		

(a) Write out the K expression for this reaction:
(b) Calculate the value for Kp for Experiments 1 and 2. What important point is illustrated by these two results?
(c) Find the missing entries for Experiments 3 \& 4

