CHM 2046 Worksheet 2

1. The two main Equilibrium Problems Types:

- Given one equation $\left(K=\frac{[\mathrm{P}]}{[\mathrm{R}]}\right)$ solve this for any one unknown.
- Given one equation, solve this for more than one unknown.

2. For the reaction indicated below, initially $P_{c i s}=1.00 \mathrm{~atm}$ and $P_{\text {trans }}=0 \mathrm{~atm}$. What should be the partial pressures of each after the system reaches equilibrium?

$$
\underline{\text { cis-2-butene } \leftrightarrow \text { trans-2-butene }} \quad \mathrm{Kp}=3.4
$$

$$
\mathbf{P}_{\mathrm{cis}}=
$$

$$
\mathbf{P}_{\text {trans }}=
$$

Note: The clue as to the problem type is in the wording:
3. For the reaction shown (at $\mathrm{T}=2000^{\circ} \mathrm{C}$) initially:

$$
{ }^{{ }^{N_{2}}}={ }^{\mathrm{P}_{\mathrm{O}_{2}}=1.00 \mathrm{~atm} \quad \text { and } \quad{ }^{\mathrm{P}} \mathrm{NO}=0 \mathrm{~atm} .}
$$

Find all partial pressures after the system reacts to equilibrium.

$$
\mathbf{N}_{2}+\mathbf{O}_{2} \leftrightarrow 2 \mathrm{NO} \quad \mathbf{K p}=\mathbf{0 . 1 0}
$$

$$
\mathbf{P}_{\mathbf{N}_{2}}={ }^{\mathbf{P}_{\mathrm{O}_{2}}=}
$$

\qquad
4. Predicting Equilibrium Shifts (when conditions change).

Example: $\mathbf{C o}\left(\mathbf{O H}_{2}\right)_{6}{ }^{+2}+\mathbf{n}$ (acetone) $\leftrightarrow \mathbf{C o}(\text { acetone })_{\mathbf{n}}{ }^{+2}+6 \mathrm{H}_{2} \mathrm{O}(\ell)$

Add acetone, the reaction shifts \qquad
Add water, the reaction shifts \qquad

Reasoning: Think about the reaction rates, or use:
Le Chatelier's Principle:

Concentration changes:
Changing n:

Changing V:

Changing T:

5. Equilibrium Shift Problems. For each reaction, how will the change cause the equilibrium to shift? What will be the overall effect on the [...] and in values?

Equation for Reaction

Change
Applied
add A
R
$[\mathrm{A}]=\mathrm{I}$
$[B]=I$
$\mathrm{Fe}^{+3}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{Fe}(\mathrm{SCN})^{+2}(\mathrm{aq})$
add Fe^{+3}
$\operatorname{add} \mathrm{I}_{2}(\mathrm{~g}) \quad$
$\left[\mathrm{Fe}^{+3}\right]=$ $\left[\mathrm{Fe}(\mathrm{SCN})^{+2}\right]=$ \qquad
$2 \mathbf{I C l}(\mathrm{~g}) \leftrightarrow \mathbf{I}_{2}(\mathrm{~g})+\mathbf{C l}_{2}(\mathrm{~g})$
正 $\left[\mathrm{I}_{2}\right]=\square \quad\left[\mathrm{Cl}_{2}\right]=$
$[\mathrm{ICI}]=$ \qquad
\qquad
$\mathbf{2 I C l}(\mathrm{g}) \leftrightarrow \mathbf{I}_{\mathbf{2}}(\mathrm{s})+\mathbf{C l}_{\mathbf{2}}(\mathrm{g})$
add $\mathrm{I}_{2}(\mathrm{~g})$
——
[ICI] = \qquad

$$
\left[\mathbf{I}_{2}\right]=\quad\left[\mathrm{Cl}_{2}\right]=
$$

$\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
add CaCO_{3} \qquad $[\mathrm{CaO}]=$ \qquad $\left[\mathrm{CO}_{2}\right]=$ \qquad

