CHM 2046 Worksheet 2

1. The two main **Equilibrium <u>Problems Types</u>**:

- Given one equation $(K = \frac{[P]}{[R]})$ solve this for <u>any one</u> unknown.
- Given one equation, solve this for <u>more than one</u> unknown.

2. For the reaction indicated below, initially $P_{cis} = 1.00$ atm and $P_{trans} = 0$ atm. What should be the partial pressures of each after the system reaches equilibrium?

cis-2-butene
$$\leftrightarrow$$
 trans-2-butene Kp = 3.4

$$\mathbf{P}_{cis} =$$
_____ $\mathbf{P}_{trans} =$ _____

Note: The <u>clue</u> as to the problem type is in the wording:

3. For the reaction shown (at T = 2000 °C) initially: ${}^{P}N_{2} = {}^{P}O_{2} = 1.00 \text{ atm} \text{ and } {}^{P}NO = 0 \text{ atm}$

Find all partial pressures after the system reacts to equilibrium.

$$N_2 + O_2 \leftrightarrow 2 NO$$
 $Kp = 0.10$

$$P_{N_2} = P_{O_2} =$$
 $P_{NO} =$

4. Predicting Equilibrium Shifts (when conditions change).

Example: $Co(OH_2)_6^{+2} + n(acetone) \leftrightarrow Co(acetone)_n^{+2} + 6H_2O(\ell)$

Add acetone, the reaction shifts ______Add water, the reaction shifts _____

<u>Reasoning</u>: Think about the reaction rates, or use:

Le Chatelier's Principle:

<u>Concentration changes:</u> <u>Changing n</u>:

<u>Changing V</u>:

<u>Changing T</u>:

5. Equilibrium Shift Problems. For each reaction, how will the change cause the equilibrium to shift? What will be the <u>overall effect</u> on the [...] and in values?

Equation for Reaction	Change Applied	Shift (R, L, or No	ne)	Effects (I, D, or Same)
(Example) $A(g) \leftrightarrow B(g)$	add A	R	[A] = I	[B] = I
$Fe^{+3}(aq) + SCN^{-}(aq) \leftrightarrow Fe(SCN)^{+2}(aq)$)		[Fe ⁺³] =	[SCN ⁻] =
add Fe ⁺³			$[Fe(SCN)^{+2}] = $	
$2 \operatorname{ICl}(g) \leftrightarrow I_2(g) + \operatorname{Cl}_2(g)$	add I ₂ (g)] = [Cl ₂] =
$2 \operatorname{ICl}(g) \longleftrightarrow I_2(s) + \operatorname{Cl}_2(g)$	add I ₂ (g)] = [Cl ₂] =
$CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$	add CaCO ₃		[CaO] = _	[CO ₂] =